AP BIOLOGY MATH REVIEW

- Take out an approved calculator and formula sheet.
- You will solve each problem and enter your answers on a grid-in sheet.

MMATHi首 $\underbrace{\circ}$
 FUN!

Grid-In Tips

- Grid left to right
- Use the formula sheet
- Don't round until the end
- Look at HOW the answer should be given ("provide your answer to the nearest...").
- You may be asked to provide your answer as a whole number, decimal, or fraction.

.123

- The 1 is in the tenths place

- The 2 is in the hundredths place
- The 3 is in the thousandths place

Q1: Chi-Square

A heterozygous red-eyed female fruit fly was crossed with a red-eyed male fruit fly. The offspring produced are shown in the table. Red eyes are sex-linked dominant to white eyes.

Phenotype	\# Flies
Red-Eyed Females	89
Red-Eyed Males	45
White-Eyed Males	66

Determine the chi-square value. Provide your answer to the nearest hundredth.

Chi-Square Strategy

- Given Data = "Observed"
- You have to determine the expected values. Usually you will use a Punnett square to figure this out.
- Calculate: $X^{2}=\frac{(o-e)^{2}}{e}+\frac{(o-e)^{2}}{e}+\frac{(o-e)^{2}}{e}$
- Degrees of Freedom (df) $=\mathrm{n}-1$
- Chi-Square value must be SMALLER than value in the 0.05 row on formula sheet in order to accept a null hypothesis (differences due to chance alone).

Observed $=89$ Red-Eyed Females, 45 Red-Eyed Males, and 66 White-Eyed Males

Expected:

		X^{R}		X^{r}
	X^{R}	$X^{R} X^{R}$		
	$X^{R} X^{r}$			
	$X^{R} Y$	$X^{r} Y$		

2:1:1 ratio
$89+45+66=200$
100 Red-Eyed Females
50 Red-Eyed Males
50 White-Eyed Males

Chi-Square:

$$
\begin{aligned}
& X^{2}=\frac{(o-e)^{2}}{e}+\frac{(o-e)^{2}}{e}+\frac{(o-e)^{2}}{e} \\
& X^{2}=\frac{(89-100)^{2}}{100}+\frac{(45-50)^{2}}{50}+\frac{(66-50)^{2}}{50} \\
& X^{2}=1.21+0.5+5.12 \\
& X^{2}=6.83 \\
& d f=3-1=2 \\
& \text { REJECT Null Hypothesis } \\
& \text { (Differences are NOT due to } \\
& \text { chance alone.) }
\end{aligned}
$$

Q2: Surface Area-to-Volume Ratio

What is the surface area-to-volume ratio for this cell? Provide your answer to the nearest hundredths.

$$
\begin{aligned}
\text { SA } & =4 \pi r^{2} \\
& =4(3.14)\left(5^{2}\right) \\
& =314
\end{aligned}
$$

$$
\begin{aligned}
V & =4 / 3 \pi r^{3} \\
& =(4 / 3)(3.14)\left(5^{3}\right) \\
& =523.3333
\end{aligned}
$$

SA/V=314/523.3333
$=.60$

Sphere

Surface
Area

$$
A=4 \pi r^{2}
$$

Volume

$$
V=\frac{4}{3} \pi r^{3}
$$

Q3: Water Potential

$$
\begin{aligned}
& \Psi=\Psi_{P}+\Psi_{S} \\
& \Psi_{S}=-i C R T
\end{aligned}
$$

- $i=$ The number of particles the molecule will make in water (sucrose or glucose = 1; $\mathrm{NaCl}=2$)
- $C=$ Molar concentration (usually provided in the problem)
- $R=$ Pressure constant $=0.0831$ liter bars $/ \mathrm{mole} \mathrm{K}$
- $T=$ Temperature in Kelvin $=273+{ }^{\circ} \mathrm{C}$

Problem:
The molar concentration of a sugar solution in an open beaker has been determined to be 0.3 M . Calculate the solute potential at 27° Celsius. Provide your answer to the nearest tenths.

Q3

Solute potential= -iCRT
$i=1$
$C=0.3$
$R=$ Pressure constant $=0.0831$
$T=27+273=300 \mathrm{~K}$

Solute potential $=-7.5$

Q4: More Water Potential

$$
\begin{aligned}
& \Psi=\Psi_{P}+\Psi_{S} \\
& \Psi_{S}=-i C R T
\end{aligned}
$$

- $i=$ The number of particles the molecule will make in water (sucrose or glucose = 1; $\mathrm{NaCl}=2$)
- $C=$ Molar concentration (usually provided in the problem)
- $R=$ Pressure constant $=0.0831$ liter bars $/ \mathrm{mole} \mathrm{K}$
- $T=$ Temperature in Kelvin $=273+{ }^{\circ} \mathrm{C}$

Problem:
At $20^{\circ} \mathrm{C}$, a cell containing 0.6 M glucose is in equilibrium with its surrounding solution containing 0.3 M glucose in an open container. What is the cell's Ψ_{p} ? Provide your answer to the nearest tenth.

$\Psi_{P}+\Psi_{S}=\Psi_{P}+\Psi_{S}$

$$
\begin{aligned}
& \text { Cell }=\Psi_{S}=-i C R T \\
& \text { Cell }=\Psi_{S}=-(1)(0.6 M)(.0831)(293 K) \\
& \text { Cell }=\Psi_{S}=-14.60898
\end{aligned}
$$

Solution $=\Psi_{S}=-i C R T$

$$
\text { Solution }=\Psi_{S}=-(1)(0.3 M)(.0831)(293 K)
$$

$$
\text { Solution }=\Psi_{S}=-7.30449
$$

$$
-14.60898+\Psi_{P}=-7.30449+0
$$

$$
\Psi_{P}=7.30449=7.3
$$

Q5: Hardy-Weinberg

A census of birds nesting on a Galapagos Island revealed that 24 of them show a rare recessive condition that affected beak formation. The other 63 birds in this population show no beak defect. If this population is in Hardy-Weinberg equilibrium, what is the frequency of the dominant allele?
Provide your answer to the nearest hundredth.

Hardy-Weinberg Strategy

- Figure out what you are given in the problem: - Allele (p or q) or Genotypes ($p^{2}, 2 p q, q^{2}$)
- Figure out what you are solving for

Q5: Solving for p (dominant allele)

Homozygous Recessive $=q^{2}=24 / 87=.2759$

$$
\begin{aligned}
& q^{2}=.2759 \\
& q=\sqrt{.2759} \\
& q=.5253 \\
& p=1-q \\
& p=1-.5253=.4747 \\
& p=.47
\end{aligned}
$$

Q6: More Hardy-Weinberg

In Africa, 9\% of a certain population has a severe form of sickle-cell anemia (ss), a recessive genetic disease.

What percentage of the population will be more resistant to malaria because they are heterozygous (Ss) for sickle-cell anemia? Provide your answer to the nearest whole number.

Q6: Solving for 2pq (heterozygous genotype)

Homozygous Recessive $=s s=q^{2}=.09$

$$
\begin{aligned}
& q^{2}=.09 \\
& q=\sqrt{.09} \\
& q=.3 \\
& p=1-q \\
& p=1-.3=.7 \\
& p=.7
\end{aligned}
$$

$$
S s=2 p q=(2)(0.7)(0.3)=.42=42 \%
$$

Q7: Rate

Hydrogen peroxide is broken down to water and oxygen by the enzyme catalase. The following data were recorded over five minutes. What is the rate of enzymatic reaction in $\mathrm{mL} / \mathrm{min}$ from 2 to 4 minutes? Provide your answer to the nearest

Time (mins)	Amount of \mathbf{O}_{2} Produced (mL)
1	2.3
2	3.6
3	4.2
4	5.5
5	5.9

Rate $=$ Rise $/$ run $=$ Slope $=d Y / d t$ Rate $=(5.5-3.6) /(4-2)$
Rate $=1.9 / 2$
Rate $=.95$

Q8: Laws of Probability

If a couple has three children, what is the probability that all three would be born female? Provide your answer as a fraction.

Q8

- Probability of a female child is $1 / 2$
- Probability of a female child AND a female child AND a female child

$1 / 2 \times 1 / 2 \times 1 / 2=1 / 8$

Q9: Population Growth

$N=$ total number in population $\quad r=$ rate of growth
There are 2,000 mice living in a field. If 1,000 mice are born each month and 200 mice die each month, what is the per capita growth rate of mice over a month? Provide your answer to the nearest tenths.

Q9

$\mathrm{N}=2000$

$r_{\text {max }}=(1000-200) / 2000=800$

 $r_{\text {max }}=800 / 2000=0.4$| - 4 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \odot | (| (1) | (1) | $\stackrel{1}{8}$ | . |
| | | (0) | (0) | (0) | (0) |
| | (1) | (1) | (1) | (1) | (1) |
| | (2) | (2) | (2) | (2) | (2) |
| | (3) | (3) | (3) | (3) | (3) |
| | (4) | 1 | (4) | (4) | (4) |
| | (5) | (5) | (5) | (5) | (5) |
| | (6) | (6) | (6) | (6) | (6) |
| | (7) | (7) | (7) | $\stackrel{7}{7}$ | ${ }^{7}$ |
| | (8) | (8) | (8) | (8) | (8) |
| | (9) | (9) | (9) | (9) | (9) |

Q10: More Population Growth

One dandelion plant can produce many seeds, leading to a high growth rate for dandelion populations. A population of dandelions is currently 40 individuals and $r_{\text {max }}=80$ dandelions/month.

Predict $d N / d t$ if these dandelions are experiencing exponential growth. Provide your answer to the nearest whole number.

Q10

$$
\begin{aligned}
& \frac{d N}{d t}=r_{\max } N=(80)(40) \\
& \frac{d N}{d t}=3200
\end{aligned}
$$

Q11: Even More Population Growth

One dandelion plant can produce many seeds, leading to a high growth rate for dandelion populations. A population of dandelions is currently 40 individuals and $r_{\text {max }}=80$ dandelions/month.

Assume these dandelions cannot grow exponentially due to lack of space. The carrying capacity for their patch of lawn is 70 dandelions. What is their $d N / d t$ under these logistic growth conditions? Provide your answer to the nearest whole number.

Q11

$$
\begin{aligned}
& \frac{d N}{d t}=r_{\max } N\left(\frac{K-N}{K}\right)=(80)(40)\left(\frac{70-40}{70}\right) \\
& \frac{d N}{d t}=(3200)(0.42857) \\
& \frac{d N}{d t}=1371.424=1371
\end{aligned}
$$

Q12
The net annual primary productivity of a particular wetland ecosystem is found to be $8,000 \mathrm{kcal} / \mathrm{m}^{2}$. If respiration by the aquatic producers is $12,000 \mathrm{kcal} /$ m^{2} per year, what is the gross annual primary productivity for this ecosystem, in $\mathrm{kcal} / \mathrm{m}^{2}$ per year? Provide your answer to the nearest whole number.

Q12

NPP = GPP - R
8,000 = GPP - 12,000 $8,000+12,000=$ GPP 20,000 = GPP

		20	0	00
\bigcirc	-	$\stackrel{1}{\circ}$	(1)	$\stackrel{1}{8}$
	(0)			

Q13: Mean

- Grasshoppers in Madagascar show variation in their backleg length. Determine the mean length of a grasshopper leg based on this data. Provide your answer answer to the nearest tenth.
- Lengths (cm): 2.0, 2.2, 2.2, 2.1, 2.0, 2.4, 2.5

Q13
Mean $=(2.0+2.2+2.2+2.1+2.0+2.4$
$+2.5) / 7=2.2$

Q14: Dilution

A student has a $2 \mathrm{~g} / \mathrm{L}$ solution. He dilutes it and creates 3 L of a $1 \mathrm{~g} / \mathrm{L}$ solution. How much of the original solution did he dilute? Provide your answer to the nearest tenths.

Q14

We are looking for V_{i} :

$$
\begin{aligned}
& C_{i} V_{i}=C_{f} V_{f} \\
& 2 V_{i}=1(3) \\
& V_{i}=1.5
\end{aligned}
$$

	1		5			
\bigcirc	-	${ }_{4}^{4}$	$\stackrel{1}{+}$	$\stackrel{1}{4}$		-
		(0)	(0)	(0)		(0)
	d	(1)	(1)	(1)		(1)
	(2)	(2)	(2)	(2)		(2)
	(3)	(3)	(3)	(3)		(3)
	(4)	(4)	(4)	4		(4)
	(5)	(6)	-	(5)		(6)
	(6)	(6)	(6)	(6)		6
	(7)	(7)	(7)	(7)		(7)
	(8)	(8)	(8)	(8)		(8)
	¢	๑	(9)	9		

