

BOZEMANSCIENCE Video: AP Biology Supplemental, Biology (9:08)

#_		Name
	1.	Biology is the:
	2.	Big Idea 1: Evolution -
		a. What did Darwin propose: all life
		b. What is macroevolution?
		c. Darwin came up with a mechanism for evolution called:
		d. 5 things that can cause evolution are:
		e. Natural selection allows organisms to become better
	3.	Big Idea 2: Free Energy –
		a. Starts with the then plants do then
		organisms do respiration that generates and eventually all leaves as
		b. Define Free Energy:
		c. Homeostasis: maintaining a stable internal using
		mechanisms.
	4.	Big Idea 3: Information – flow from organism to organism, generation to generation a. Diagram the Central Dogma of Life: DNA
		b. Genetics: what scientist helped with our early understanding of genetics?
		c. Responding to our environment through cell an example of information transfer.
	5.	Big Idea 4: Systems –
		a. Emergent Properties: properties that weren't there the
		h E O Wilson is known as the

BOZEMANSCIENCE Video: AP Big Idea 1 - Evolution: 001, Natural Selection (10:15)

# _		Name	Per	Date:	_ S:	_ F:
	1.	What did Charles Darwin do? He gave us a				
	2.	Evolution is:				
	3.	Gene Pool: all				
	4.	Natural Selection: when you live or die based on	1			
	5.	As the environment changes you are:				
	6.	Enough fitness (survive and reproduce) over tim	e that car	lead to:		
	7.	Smallest unit that can evolve is a:				
	8.	Two ways to get variety in a population: novel ch	naracterist	tics:		
		another way to get variety is		·		
	9.	What is the genotype of a light moth fo	r a dark m	noth		
	10.	Why did the light moth survive?				
	11.	Why did the dark moth population increase?				
	12.	Write the Hardy-Weinberg equation out:				
	13.	Adaptation is a				

14. Best definition of Natural Selection:

BOZEMANSCIENCE Video: AP Big Idea 2: 012, Life Requires Free Energy (12:58)

#_		_ Nan	me	Per	_ Date:	S:	F:
	1.	Introdu a.	uction: Where do we get a constant supply of fr	ee energ	y?		
		b.	What do plants do with it?				
		C.	How do we utilize free energy?				
		d.	What is "neat" about glycolysis?				
		e.	What are the three major things we GET	from fre	e energy?		
		f.	What is homeostasis?				
		g.	What can we do with extra free energy?				
		h.	What happens when we get disruptions	?			
	2.	Life re	quires:				
	3.	To ma	intain order we require a constant				
	4.	What i	s the first law of thermodynamics?				
	5.	Eventu	ually all energy ends up as				
			s the second law of thermodynamics?				
	7.	What i	s entropy?				
	8.	How c	an evolution occur if things are going to g	reater dis	order?		
	9.	What i	s glycolysis? Why does it cost ATP?				
	10.	How is	s it that different types of sugars can use o e?	glycolysis	though they	all don't co	ontain
	11.	. What i metab	s the relationship between metabolism ar olism?	nd size?	Why do mice	have such	n a high
	12.	Organ	ization requires				
	13.	What i	s released when you break down ATP to	ADP?			
	14.	Growth	h isn't just about getting bigger but also				
	15.	We us	e extra energy to do:				
	16	14/0.00	n etoro				

17. What happens if we have a decrease in free energy – as people?

18. Describe what happened at Easter Island.

Video: AP Big Idea 2: 018, Positive and Negative Feedback Loops (14:26)

#	Name	Per	Date:	_ S:	_F:
1.	Introduction a. Negative Feedback loop: dance around that	point, brinç	gs you		
	b. Positive Feedback loop: amplifying and movi	ng			
	c. What can alterations in our feedback loops le	ad to?			
2.	Negative Feedback a. Homeostasis defined:				
	b. How does a hairless cat maintain homeos	stasis? Thi	rough		
	c. Ectotherms defined:				
	d. Endotherms defined:				
	e. What types of feedback loop do we use to i. If too hot we (also explain why we			ture?	
	ii. If too cold we (again, explain why	that behav	vior):		
3.	Positive Feedback a. What plant hormone does ripe fruit give of	off?			
	b. Why can one "bad apple" spoil a barrel?				
	c. How is fruit ripening an example of positive	/e feedbac	ck?		

d. What is the example in humans?

	e.	Positive feedback is not used for a long time, it is used when you want to do something
4.		es in Feedback Loops Besides being in your blood, where else could glucose go? (2x)
	b.	What two hormones help with blood glucose regulation:
	C.	What organ and what other job does it have?
	d.	What are the two cells found in the pancreas and what does each do?
	e.	Why does the blood glucose levels usually rise three times per day?
	f.	What else was rising at the same time?
	g.	What is wrong when you have type I diabetes?
	h.	What is type II diabetes a result of usually?
	i.	What pattern do you see with diabetes worldwide and why is that?

Video: AP Big Idea 3: 029, Mendelian Genetics (16:04)

#_		Name	Per	Date:	. 5:	F:
A.	Introdu 1. Wh	uction hat did Mendel work with?				
	2. Wh	hat is the P Cross?				
	3. Wh	hat is the F1 cross?				
	4. De	escribe the incorrect idea of "Blending"?				
	5. Th	ne F1 was a "hybrid" – what does that mean?				
B.		am the first Punnett square that he created belo wo purple flowers:	w and ex	plain how whi	te flower o	could come
C.		el's Laws: Law of Segregation: like a flip. It is a	i		of thos	e two
		alleles. Random				
	b.	Independent Assortment: Traits on different cl Sometimes things do travel together, but that same:				
D.	1. Co	e the video at the Sample Problems and try and oin flip: eterozygous means:	work the	m out.		
	Нс	omozygous means:				
	3. Wh	hat is an organism's genotype? What is an org	janism's _ا	ohenotype?		
	4. Wł	hat is the probability of homozygous recessive	(rr)?			
		hy is there a greater chance of green seeds in pabove?	oroblem 5	than wrinkled	n) abəəs t	r) in problem
	6. Tw	vo Punnett squares because you need to multip	ly the			together.
E.	Diseas	se: Would you want to know?				

AP Biology 037 – Cell Communication Video Review Sheet

www.bozemanscience.com/037-cell-communication

1.	Overvi a.	ew: do diagrams (or use his) to represent each (the work cell in a box and spacing etc.) No distance
	b.	Short distance
	C.	Long distance
2.	No dis	tance: Immune Response example (Post-it note)
	a.	Antigens is an
	b.	APC example: m
	C.	T-helper cell has to know specifically what the is
	d.	MHC2 is a p that brings the surface of that antigen to its surface
	e.	CD4 is on the surface of the
	f.	The activated helper T-cell can then activate:
		i. B Cell so it can make
		ii. Killer T cell so it can
3.	Short I a.	Distance: local regulator, neuron example (email) Neurons are not directly connected, neurotransmitters have to cross the
	b.	Why aren't the two neurons directly connected? It is hypothesize that this is for
		C
	C.	What sport does Mr. Anderson do?
	d.	After a few hours of exercise, what is released and what does it do?
4.	_	Distance: (Facebook example) Example:
	b.	How is a hormone like Facebook?
5.	Summ	ary: Our body cells are like us: You have to know your and send a
		that is

BOZEMANSCIENCE Video: AP Big Idea 4: 042, Biological Molecules (15:20)

#	_ Nar	me	_ Per	_ Date:	S:	F:
1.	What a	are the four categories of macromolecule	s?			
2.	What i	is a monomer?				
3.	•	are unique because they don't have a sir are important.	ngle type o	of monomer.	Name two	reasons why
4.	Lipids	are generally polar molecules. T/F circle	one			
5.	Nuclei	ic acid monomers are	and a	re made up c	of	
6.	What a	are the functions of nucleic acids?				
7.	Proteir	n monomers are:				
8.	What	differentiates one amino acid from anothe	er?			
9.	carbohydrate monomers are					
10		gnificance of "directionality" of the monon mers together in a certain sequence/orde			ıt when you	ı put the
	a.	The process of "putting monomers toge"	ther" is ca	lled		
	b.	What is lost during the process of #11?				
	C.	What kind of bond is formed generally?	Specifica	lly between a	amino acids	of a protein?
	d.	What must be added to break the bonds	s?			
	e.	What is the name of that process?				
11		erning Nucleic Acids : What are the two examples of nucleic a	cids he ga	ve? (btw ATF	^o is also ar	ı example)
	b.	What is a nucleotide and what are its the	ree parts?			
	C.	What are differences between DNA and	RNA?			

d. What are the four nucleotides in DNA? RNA?

	e.	When you see 3' and 5', this is referring to the nucleic acid's directionality and specifically to the carbons found in the
	f.	What makes DNA antiparallel?
12. Co		erning Proteins : The protein monomer is:
	b.	How many amino acids are there?
	C.	Draw and label a basic amino acid in the box to the right.
	d.	What part of the amino acid differentiates it from another?
	e.	What is the directionality of a protein?
	f.	What is the significance of the directionality in protein digestion?
13. Co		erning Lipids : List the different types of lipids (4):
	b.	What is the similar structure between the four?
	C.	What is significant about hydrocarbons found in lipids? (2):
	d.	What is unique about phospholipids?
	e.	What does amphipathic mean?
	f.	What is the difference between saturated and unsaturated fatty acids?
	g.	Why do unsaturated fats bend?
	h.	Why is margarine a solid though it originates from plants? (btw, butter is <i>solid</i> at room temperatures)
14. Co	once a.	erning Carbohydrates: Carbohydrates give us: (2)
	b.	Carbohydrate monomers are
	C.	What are the two types of glucose molecules indicated?
	d.	What determines directionality in carbohydrates?

BOZEMANSCIENCE Video: AP Big Idea 4: 046, Communities (13:41)

#	Name	Per	Date:	_ S:	F:
1.	What does BBECPO stand for?				
2.	What is community structure built on? (2x)				
3.	What is the key term for community interactions?				
4.	Growth: all populations start with what type of growth	1?			
5.	What is a community made of?				
6.	What is symbiosis and what are the three types?				
7.	Explain the Leaf-Cutter ant symbiotic relationship wit	h the fun	gus		
8.	Concerning population growth: what are the two limit	ing factor	rs and exampl	es for each?	?
9.	What is the carrying capacity?				
10.	Draw a simple age-structure diagram:				
11.	What happens when most of the population is very y	oung?			
12	How is the United State's age-structure diagram diffe	rent from	Angola's?		

Video: AP Big Idea 4: 051, Ecosystem Change (12:18)

#_		_ Nar	me		Per	Date:	
	1.	. Give a short summary of his introduction piece relating to jet traffic, temperature and the experiment:					he short
	2.	What	is clima	te?: c	over a long perio	od	
	3.	•		nange driven by Humans: Glob did the Average Temperature	•	•	
		b.	As pe	rmafrost starts to melt, what ga	as is given off?		
		C.	How is	s the arctic ecosystem change	above an exar	nple of positive feedback?	
		d.	Descr	ibe the water vapor increase a	and how it is als	o an example of positive fe	edback:
		e.		redicted that: if there is a .5 degree Celsius to:	s over the next	100 years we could have da	amage
			ii.	If there is a 1-degree change	e, coral reefs wi	Il become	
				This means the coral will ext	rude the	Additionally	% of
				the global ecosystems will be	ecome transfori	med. It will impact the area	s near
				the more.			
			iii.	If there is a 2-degree change	e, what are the	three predicted results?	
			iv.	How many species could be	come extinct if	there is a 3-degree change?	?
		f	Specie	es simply can't evolve	enc	ouah	

4.	. Ecosystem change driven by Geologic Factors: Continental Drift example:				
	a.	Biogeographical changes: changes in the that are living on continents.			
	b.	As the continents drifted, they change their and thereby their ecosystems.			
	C.	What group of organisms did he use as an example?			
5.	•	stem change driven by Meteorological Factors: El Nino example: El Nino happens every:			
	b.	You get a warming of the waters in the:			
	C.	What two things happen to the marine iguanas during El Nino as a result of the decrease in the algae?			

BOZEMANSCIENCE Video: AP Biology Practices, 1- Models and Representations (12:24)

#	Name Per Date: S: F:
A. What is	s a model?A visual representation of
B. A	of how it works is a "Conceptual Model".
C. What a example:	re the four Big Ideas we will be discussing in AP Biology? List below along with associated
1.	example shows natural
2.	Free example:
3.	genetics and cell
4.	pyramid of
[Please ke on the "pr	a. Relating to beetles, draw/label the final graph he created below:
2.	b. Why do you think there were fewer light colored beetles when the trees became darker? What was is going to move in his example?
3.	They will give you a model and then based on that.
4.	Means that you are your knowledge to a visual representation
5.	Asking you to the knowledge that you have.
	s allow us to make of a model.
E. What is	s the most famous model of all? That was created by

Video: AP Biology Practices, 2- Using Mathematics (9:28)

! 	_ Nan					Date:	S:	F:	_
			ATOR FOR THIS We what at their cor						
В.	What i	s "Mathei	matical Biology" dri	ven by:					
	1.			: sequend	cing DNA	– what is th	ne trend?		
	2.		Th	eory: being us	sed to pre	dict			
	3.	Computi	ng	: co	mputers a	re getting			
	4.		ory experiments in In vitro:	silico:					
		b.	In vivo:						
		C.	In silico: simulatin	g					
C.		equations Evolutio	in the four big idea n:	s: want to be t	familiar wi	th these 3. Inform	ation:		
	2.	Free end	ergy:				MS: (write it out nave not done ye	even though this et ©)	
D.	Under	standings	in Using Mathema	itics:					
	1.	and do i	the t and then check it.	You should o	of a Mathe do this one	ematical Ro e no proble	outine: Paus em. Show yo	e video, try our work below	,
	2.	Apply work be	ow. I think you car	Ro n do this one b	outines: Aç pased on c	gain, try thi common se	is problem, s ense!	showing your	
	3.	a.	You can absolute	quantities ly do this, sho	that w work.		natura	I phenomena.	
		b.	Potatoes: you car	n do this too!		_M Sucros	se		

Video: AP Science Practices: 3, Scientific Questioning (9:14)

[‡] _		Name Per Date: S: F:
	1.	I should be able to ask you, "How do we
	2.	Students should be able to answer, "This is how
	3.	What is a good example of how you ask questions all the time?
	4.	What is the problem with: a. Smallest bird question?
		b. Universe question?
		c. Genetically modified food question?
	5.	Why is the plant growth question more scientific?but what is a problem with it too?
	6.	Why is the CO2 question a good scientific question?
	7.	A good question is going to lead to: (2x)
	8.	What are the three things you have to be able to do during the practice of "Scientific Questioning"?
	9.	Write out one of the three questions he "posed" concerning the phylogenetic tree. (You are just asking, not answering.)
		. When you "refine" a question, you are taking it to another What is the third part of scientific questioning?
	12	. What can you then do if you are good at scientific questioning?

BOZEMANSCIENCE Video: AP Science Practices: 4, Data Collection Strategies (8:34)

							•		•	, ,	,
#		Nan	ne				Per	_ Date:	S:	F:	
	1.	What i	s scien	ce? Diagra	m his flow	chart (you	can do it le	ft to right): TI	ne belief tha	at:	
	2.	In addi	ition to	collecting d	ata you ha	ive to be a	ble to:				
	3.	Questi a.	To right a	nswer to th	e photosyr	nthesis que	ollection Stra estion BEFC right?	ategies. See DRE he expla —	e if you can ains it. You	guess the can see how	N
		b.	To	First you v	a pl	an for d to:		Data of	your own		
				Then:			riment that				
		d.	To				of D	ata.			
	EMANSO	CIENCE				actices:	5, Analy	sis & Eva	ıluation	of	
	1.	One of	f the firs	st things yo	u want to d	lo with dat	a is:				
			you loo ill be as		ee if there	are patter	ns that you	can			
		a.	То			data to Ide	entify				
		b.	To		C	bservation	ns and				
		C.	То		E	vidence					

4. We collect data. First we have to ______ it and then we have to

BOZEMANSCIENCE Video: AP Biology Practices, Scientific Explanations & Theories (8:00)

#_		_ Nan	ne		Per	Date:	_ S:	_F:
	A.	Diagra	ım the process of developir	ng a theory; be	sure to inc	lude the feed	back loops.	
	В.	introdu this pra	ve ways to deal with theorie ce you to the practice, eventua actice more readily and as a re Justify claims with	ally you will under	stand the c	ons: (Initially wontent to be ab	re will use this le to use the e	s video to examples in
			Construct explanations ba	ased on				
		3.	the	e Reasons that	Explanatio	ons and Theo	ries are	
		4.	Make	and predicti	ons about			
		5.	Evaluate					
	C.	Theori	es get better and better ov	er	_ and on tl	ne test they w	ant you to t	e able to

Video: AP Biology Practices, 7- Scales, Concepts and Representations (7:24)

#	_ Name	_ Per	Date:	S:	F:				
1.	This practice is aboutdifferent disciplines.		_ knowledge.	Bringing to	ogether				
2.	Scale: draw and label intersecting diagram and use one of his examples:								
3	Domains: of biology.								
0.	a. Thermodynamics (Physics) Example:								
	b. Biochemistry Example:								
	c. Chemistry Example:								
4.	Big Idea examples: elaborate on								
	a. Evolution example: peppered moth, wha	at happen	is over						
	b. Free Energy: Feedback loops and how	they allov	v organisms t	o survive in					
	c. Information: Himalayan rabbit ex, expre	ssing diffe	erent genes d	epending o	n				
	d. Systems: Cotton ex sugar able to create	e							
_	Tour made								
5.	Two goals: a. Connect Phenomenon and Models Acro	oss		and					
	scales. Try answering the question before								
	b. Connect Concepts and		omains. Tr	/					

Are you going to try his Wiki game?